direct product, p-group, metabelian, nilpotent (class 2), monomial, rational
Aliases: D4×C23, C4⋊C24, C25⋊2C2, C22⋊C24, C2.1C25, C24⋊7C22, C23⋊3C23, (C23×C4)⋊7C2, (C2×C4)⋊4C23, (C22×C4)⋊19C22, SmallGroup(64,261)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for D4×C23
G = < a,b,c,d,e | a2=b2=c2=d4=e2=1, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, cd=dc, ce=ec, ede=d-1 >
Subgroups: 937 in 681 conjugacy classes, 425 normal (5 characteristic)
C1, C2, C2, C2, C4, C22, C22, C2×C4, D4, C23, C23, C22×C4, C2×D4, C24, C24, C24, C23×C4, C22×D4, C25, D4×C23
Quotients: C1, C2, C22, D4, C23, C2×D4, C24, C22×D4, C25, D4×C23
(1 9)(2 10)(3 11)(4 12)(5 16)(6 13)(7 14)(8 15)(17 26)(18 27)(19 28)(20 25)(21 32)(22 29)(23 30)(24 31)
(1 25)(2 26)(3 27)(4 28)(5 24)(6 21)(7 22)(8 23)(9 20)(10 17)(11 18)(12 19)(13 32)(14 29)(15 30)(16 31)
(1 30)(2 31)(3 32)(4 29)(5 17)(6 18)(7 19)(8 20)(9 23)(10 24)(11 21)(12 22)(13 27)(14 28)(15 25)(16 26)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)
(1 15)(2 14)(3 13)(4 16)(5 12)(6 11)(7 10)(8 9)(17 22)(18 21)(19 24)(20 23)(25 30)(26 29)(27 32)(28 31)
G:=sub<Sym(32)| (1,9)(2,10)(3,11)(4,12)(5,16)(6,13)(7,14)(8,15)(17,26)(18,27)(19,28)(20,25)(21,32)(22,29)(23,30)(24,31), (1,25)(2,26)(3,27)(4,28)(5,24)(6,21)(7,22)(8,23)(9,20)(10,17)(11,18)(12,19)(13,32)(14,29)(15,30)(16,31), (1,30)(2,31)(3,32)(4,29)(5,17)(6,18)(7,19)(8,20)(9,23)(10,24)(11,21)(12,22)(13,27)(14,28)(15,25)(16,26), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,15)(2,14)(3,13)(4,16)(5,12)(6,11)(7,10)(8,9)(17,22)(18,21)(19,24)(20,23)(25,30)(26,29)(27,32)(28,31)>;
G:=Group( (1,9)(2,10)(3,11)(4,12)(5,16)(6,13)(7,14)(8,15)(17,26)(18,27)(19,28)(20,25)(21,32)(22,29)(23,30)(24,31), (1,25)(2,26)(3,27)(4,28)(5,24)(6,21)(7,22)(8,23)(9,20)(10,17)(11,18)(12,19)(13,32)(14,29)(15,30)(16,31), (1,30)(2,31)(3,32)(4,29)(5,17)(6,18)(7,19)(8,20)(9,23)(10,24)(11,21)(12,22)(13,27)(14,28)(15,25)(16,26), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,15)(2,14)(3,13)(4,16)(5,12)(6,11)(7,10)(8,9)(17,22)(18,21)(19,24)(20,23)(25,30)(26,29)(27,32)(28,31) );
G=PermutationGroup([[(1,9),(2,10),(3,11),(4,12),(5,16),(6,13),(7,14),(8,15),(17,26),(18,27),(19,28),(20,25),(21,32),(22,29),(23,30),(24,31)], [(1,25),(2,26),(3,27),(4,28),(5,24),(6,21),(7,22),(8,23),(9,20),(10,17),(11,18),(12,19),(13,32),(14,29),(15,30),(16,31)], [(1,30),(2,31),(3,32),(4,29),(5,17),(6,18),(7,19),(8,20),(9,23),(10,24),(11,21),(12,22),(13,27),(14,28),(15,25),(16,26)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32)], [(1,15),(2,14),(3,13),(4,16),(5,12),(6,11),(7,10),(8,9),(17,22),(18,21),(19,24),(20,23),(25,30),(26,29),(27,32),(28,31)]])
D4×C23 is a maximal subgroup of
C24.50D4 C25⋊C4 C25.C4 C23.35D8 C24.90D4 C23.191C24 C24⋊7D4 C24.94D4 C23.308C24 C24⋊8D4 C23.333C24 C23.335C24 C24⋊9D4 C24.177D4 C22.73C25
D4×C23 is a maximal quotient of
C22.38C25 C22.73C25 C22.74C25 C22.75C25 C22.76C25 C22.77C25 C22.78C25 C4⋊2+ 1+4 C4⋊2- 1+4 C22.87C25 C22.88C25 C22.89C25 C8.C24 D8⋊C23 C4.C25
40 conjugacy classes
class | 1 | 2A | ··· | 2O | 2P | ··· | 2AE | 4A | ··· | 4H |
order | 1 | 2 | ··· | 2 | 2 | ··· | 2 | 4 | ··· | 4 |
size | 1 | 1 | ··· | 1 | 2 | ··· | 2 | 2 | ··· | 2 |
40 irreducible representations
dim | 1 | 1 | 1 | 1 | 2 |
type | + | + | + | + | + |
image | C1 | C2 | C2 | C2 | D4 |
kernel | D4×C23 | C23×C4 | C22×D4 | C25 | C23 |
# reps | 1 | 1 | 28 | 2 | 8 |
Matrix representation of D4×C23 ►in GL5(ℤ)
-1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | -1 | 0 |
0 | 0 | 0 | 0 | -1 |
-1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | -1 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 1 |
-1 | 0 | 0 | 0 | 0 |
0 | -1 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | -1 | 0 |
0 | 0 | 0 | 0 | -1 |
-1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | -1 | 0 | 0 |
0 | 0 | 0 | 0 | -1 |
0 | 0 | 0 | 1 | 0 |
-1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | -1 | 0 |
0 | 0 | 0 | 0 | 1 |
G:=sub<GL(5,Integers())| [-1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,-1,0,0,0,0,0,-1],[-1,0,0,0,0,0,1,0,0,0,0,0,-1,0,0,0,0,0,1,0,0,0,0,0,1],[-1,0,0,0,0,0,-1,0,0,0,0,0,1,0,0,0,0,0,-1,0,0,0,0,0,-1],[-1,0,0,0,0,0,1,0,0,0,0,0,-1,0,0,0,0,0,0,1,0,0,0,-1,0],[-1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,-1,0,0,0,0,0,1] >;
D4×C23 in GAP, Magma, Sage, TeX
D_4\times C_2^3
% in TeX
G:=Group("D4xC2^3");
// GroupNames label
G:=SmallGroup(64,261);
// by ID
G=gap.SmallGroup(64,261);
# by ID
G:=PCGroup([6,-2,2,2,2,2,-2,409]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^2=c^2=d^4=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e=d^-1>;
// generators/relations